Local Structure of Li+ in Concentrated Ethylene Carbonate Solutions Studied by Low-Frequency Raman Scattering and Neutron Diffraction with 6Li/7Li Isotopic Substitution Methods

J Phys Chem B. 2017 Dec 7;121(48):10979-10987. doi: 10.1021/acs.jpcb.7b10933. Epub 2017 Nov 22.

Abstract

Isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for concentrated LiTFSA-EC solutions to obtain structural insight on solvated Li+ as well as the structure of contact ion pair, Li+···TFSA-, formed in highly concentrated EC solutions. Symmetrical stretching vibrational mode of solvated Li+ and solvated Li+···TFSA- ion pair were observed at ν = 168-177 and 202-224 cm-1, respectively. Detailed structural properties of solvated Li+ and Li+···TFSA- contact ion pair were derived from the least-squares fitting analysis of first-order difference function, ΔLi(Q), between neutron scattering cross sections observed for 6Li/7Li isotopically substituted 10 and 25 mol % *LiTFSA-ECd4 solutions. It has been revealed that Li+ in the 10 mol % LiTFSA solution is fully solvated by ca. 4 EC molecules. The nearest neighbor Li+···O(EC) distance and Li+···O(EC)═C(EC) bond angle are determined to be 1.90 ± 0.01 Å and 141 ± 1°, respectively. In highly concentrated 25 mol % LiTFSA-EC solution, the average solvation number of Li+ decreases to ca. 3 and ca. 1.5. TFSA- are directly contacted to Li+. These results agree well with the results of band decomposition analyses of isotropic Raman spectra for intramolecular vibrational modes of both EC and TFSA-.

Publication types

  • Research Support, Non-U.S. Gov't