5-Aza-2'-deoxycytidine protects against emphysema in mice via suppressing p16Ink4a expression in lung tissue

Int J Chron Obstruct Pulmon Dis. 2017 Oct 30:12:3149-3158. doi: 10.2147/COPD.S131090. eCollection 2017.

Abstract

Background: There is a growing realization that COPD, or at least emphysema, involves several processes presenting in aging and cellular senescence. Endothelial progenitor cells (EPCs) contribute to neovascularization and play an important role in the development of COPD. The gene for p16Ink4a is a major dominant senescence one. The aim of the present study was to observe changes in lung function, histomorphology of lung tissue, and expression of p16Ink4a in lung tissue and bone marrow-derived EPCs in emphysematous mice induced by cigarette-smoke extract (CSE), and further to search for a potential candidate agent protecting against emphysema induced by CSE.

Materials and methods: An animal emphysema model was induced by intraperitoneal injection of CSE. 5-Aza-2'-deoxycytidine (5-Aza-CdR) was administered to the emphysematous mice. Lung function and histomorphology of lung tissue were measured. The p16Ink4a protein and mRNA in EPCs and lung tissues were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction, respectively.

Results: CSE induced emphysema with increased p16Ink4a expression in lung tissue and bone marrow-derived EPCs. 5-Aza-CdR partly protected against emphysema, especially in the lung-morphology profile, and partly protest against the overexpression of p16Ink4a in EPCs and lung tissue induced by CSE.

Conclusion: 5-Aza-CdR partly protected against emphysema in mice via suppressing p16Ink4a expression in EPCs and lung tissue.

Keywords: 5-Aza-2′-deoxycytidine; cigarette smoke; emphysema; endothelial progenitor cells; p16Ink4a.

MeSH terms

  • Animals
  • Azacitidine / analogs & derivatives*
  • Azacitidine / pharmacology
  • Cells, Cultured
  • Cigarette Smoking / adverse effects*
  • Cyclin-Dependent Kinase Inhibitor p16 / metabolism*
  • Cytoprotection
  • Decitabine
  • Disease Models, Animal
  • Down-Regulation
  • Endothelial Progenitor Cells / drug effects
  • Endothelial Progenitor Cells / metabolism
  • Endothelial Progenitor Cells / pathology
  • Lung / drug effects*
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Mice, Inbred C57BL
  • Pulmonary Emphysema / metabolism
  • Pulmonary Emphysema / pathology
  • Pulmonary Emphysema / prevention & control*
  • Signal Transduction / drug effects
  • Smoke / adverse effects

Substances

  • Cdkn2a protein, mouse
  • Cyclin-Dependent Kinase Inhibitor p16
  • Smoke
  • Decitabine
  • Azacitidine