Monoamines in glioblastoma: complex biology with therapeutic potential

Neuro Oncol. 2018 Jul 5;20(8):1014-1025. doi: 10.1093/neuonc/nox210.

Abstract

Glioblastoma (GBM) is characterized by extremely poor prognoses, despite the use of gross surgical resection, alkylating chemotherapeutic agents, and radiotherapy. Evidence increasingly highlights the role of the tumor microenvironment in enabling this aggressive phenotype. Despite this interest, the role of neurotransmitters, brain-specific messengers underlying synaptic transmission, remains murky. These signaling molecules influence a complex network of molecular pathways and cellular behaviors in many CNS-resident cells, including neural stem cells and progenitor cells, neurons, and glia cells. Critically, available data convincingly demonstrate that neurotransmitters can influence proliferation, quiescence, and differentiation status of these cells. This ability to affect progenitors and glia-GBM-initiating cells-and their availability in the CNS strongly support the notion that neurotransmitters participate in the onset and progression of GBM. This review will focus on dopamine and serotonin, as studies indicate they contribute to gliomagenesis. Particular attention will be paid to how these neurotransmitters and their receptors can be utilized as novel therapeutic targets. Overall, this review will analyze the complex biology governing the interaction of GBM with neurotransmitter signaling and highlight how this interplay shapes the aggressive nature of GBM.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use*
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Dopamine / metabolism*
  • Glioblastoma / drug therapy*
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • Humans
  • Serotonin / metabolism*
  • Signal Transduction / drug effects*

Substances

  • Antineoplastic Agents
  • Serotonin
  • Dopamine