Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance

Stem Cell Res. 2017 Dec:25:107-114. doi: 10.1016/j.scr.2017.10.011. Epub 2017 Oct 16.

Abstract

Physical cues are major determinants of cellular phenotype and evoke physiological and pathological responses on cell structure and function. Cellular models aim to recapitulate basic functional features of their in vivo counterparts or tissues in order to be of use in in vitro disease modeling or drug screening and testing. Understanding how culture systems affect in vitro development of human pluripotent stem cell (hPSC)-derivatives allows optimization of cellular human models and gives insight in the processes involved in their structural organization and function. In this work, we show involvement of the mechanotransduction pathway RhoA/ROCK in the structural reorganization of hPSC-derived cardiomyocytes after adhesion plating. These structural changes have a major impact on the intracellular localization of SERCA2 pumps and concurrent improvement in calcium cycling. The process is triggered by cell interaction with the culture substrate, which mechanical cues drive sarcomeric alignment and SERCA2a spreading and relocalization from a perinuclear to a whole-cell distribution. This structural reorganization is mediated by the mechanical properties of the substrate, as shown by the process failure in hPSC-CMs cultured on soft 4kPa hydrogels as opposed to physiologically stiff 16kPa hydrogels and glass. Finally, pharmacological inhibition of Rho-associated protein kinase (ROCK) by different compounds identifies this specific signaling pathway as a major player in SERCA2 localization and the associated improvement in hPSC-CMs calcium handling ability in vitro.

Keywords: Human cardiomyocytes; Hydrogel; Mechanotransduction; Rock; SERCA2; Structural organization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation / genetics
  • Cell Differentiation / physiology
  • Cell Line
  • Humans
  • Mechanotransduction, Cellular / genetics
  • Mechanotransduction, Cellular / physiology
  • Myocytes, Cardiac / metabolism*
  • Pluripotent Stem Cells / cytology*
  • Pluripotent Stem Cells / metabolism*
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism*

Substances

  • Sarcoplasmic Reticulum Calcium-Transporting ATPases