Characterization of the Lycium barbarum fruit transcriptome and development of EST-SSR markers

PLoS One. 2017 Nov 10;12(11):e0187738. doi: 10.1371/journal.pone.0187738. eCollection 2017.

Abstract

Lycium barbarum, commonly known as goji, is important in Chinese herbal medicine and its fruit is a very important agricultural and biological product. However, the molecular mechanism of formation of its fruit and associated medicinal and nutritional components is unexplored. Moreover, this species lacks SSR markers due to lack of genomic and transcriptomic information. In this study, a total of 139,333 unigenes with average length of 1049 bp and N50 of 1579 bp are obtained by trinity assembly from Illumina sequencing reads. A total of 92,498 (66.38%) unigenes showed similarities in at least one database including Nr (46.15%), Nt (56.56%), KO (15.56%), Swiss-prot (33.34%), Pfam (33.43%), GO (33.62%) and KOG/COG (17.55%). Genes in flavonoid and taurine biosynthesis pathways were found and validated by RT-qPCR. A total of 50,093 EST-SSRs were identified from 38,922 unigenes, and 22,537 EST-SSR primer pairs were designed. Four hundred pairs of SSR markers were randomly selected to validate assembly quality, of which 352 (88%) were successful in PCR amplification of genomic DNA from 11 Lycium accessions and 210 produced polymorphisms. The polymorphic loci showed that the genetic similarity of the 11 Lycium accessions ranged from 0.50 to 0.99 and the accessions could be divided into 4 groups. These results will facilitate investigations of the molecular mechanism of formation of L. barbarum fruit and associated medicinal and nutritional components, and will be of value to novel gene discovery and functional genomic studies. The EST-SSR markers will be useful for genetic diversity evaluation, genetic mapping and marker-assisted breeding.

MeSH terms

  • Expressed Sequence Tags*
  • Genetic Markers*
  • Lycium / genetics*
  • Transcriptome*

Substances

  • Genetic Markers

Grants and funding

This work was supported by Natural Science Foundation of Ningxia Province, Award Number: NZ17228, Recipient: Chunling Chen.