Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions

Inorg Chem. 2017 Nov 20;56(22):13897-13912. doi: 10.1021/acs.inorgchem.7b02020. Epub 2017 Nov 9.

Abstract

Detailed structural, magnetic, and photoluminescence (PL) characterization of four new compounds based on 1-methylimidazole-5-carboxylate (mimc) ligand and transition metal ions, namely [Ni(mimc)2(H2O)4] (1), [Co(μ-mimc)2]n (2), {[Cu2(μ-mimc)4(H2O)]·2H2O}n (3), and [Cd(μ-mimc)2(H2O)]n (4) is reported. The structural diversity found in the family of compounds derives from the coordination versatility of the ligand, which coordinates as a terminal ligand to give a supramolecular network of monomeric entities in 1 or acts as a bridging linker to build isoreticular 2D coordination polymers (CPs) in 2-4. Magnetic direct-current (dc) susceptibility data have been measured for compounds 1-3 to analyze the exchange interactions among paramagnetic centers, which have been indeed supported by calculations based on broken symmetry (BS) and density functional theory (DFT) methodology. The temperature dependence of susceptibility and magnetization data of 2 are indicative of easy-plane anisotropy (D = +12.9 cm-1, E = +0.5 cm-1) that involves a bistable Ms = ±1/2 ground state. Alternating-current (ac) susceptibility curves exhibit field-induced single-ion magnet (SIM) behavior that occurs below 14 K, which is characterized by two spin relaxation processes of distinct nature: fast relaxation of single ions proceeding through multiple mechanisms (Ueff = 26 K) and a slow relaxation attributed to interactions along the polymeric crystal building. Exhaustive PL analysis of compound 4 in the solid state confirms low-temperature phosphorescent green emission consisting of radiative lifetimes in the range of 0.25-0.43 s, which explains the afterglow observed during about 1 s after the removal of the UV source. Time-dependent DFT and computational calculations to estimate phosphorescent vertical transitions have been also employed to provide an accurate description of the PL performance of this long-lasting phosphor.