Probing the effect of polymer molecular weight on penetration into the wood cell wall using polyethylenimine (PEI) as a model compound

J Microsc. 2018 May;270(2):121-128. doi: 10.1111/jmi.12663. Epub 2017 Nov 8.

Abstract

Decking is one of the largest applications for the treated wood market. The most challenging property to obtain for treated wood is dimensional stability, which can be achieved, in part, by cell wall bulking, cell wall polymer crosslinking and removal of hygroscopic components in the cell wall. A commonly accepted key requirement is for the actives to infuse through the cell wall, which has a microporosity of ∼5-13 nm. Equally as challenging is being able to measure and quantify the cell wall penetration. Branched polyethylenimine (PEI) was studied as a model polymer for penetration due to its water solubility, polarity, variable molecular weight ranges, and ability to form a chelation complex with preservative metals to treat lumbers. Two different molecular weight polyethylenimines (PEI), one with a weight average molecular weight (Mw) equal to 800 Da and the other 750 000 Da, were investigated for penetration by microscopy and spectroscopy techniques. Analytical methods were developed to both create smooth interfaces and for relative quantitation and visualisation of PEI penetration into the wood. The results showed both PEI with Mw of 800 Da and PEI with Mw of 750 000 Da coated the lumens in high density. However, only the PEI with Mw of 800 appeared to penetrate the cell walls in sufficient levels. Literature has shown the hydrodynamic radii of PEI 750 000 is near 29 nm, whereas a smaller PEI at 25 K showed 4.5 nm. Most importantly the results, based on methods developed, show how molecular weight and tertiary structure of the polymer can affect its penetration, with the microporosity of the wood being the main barrier.

Keywords: Electron microscopy; fluorescence; polymer penetration; wood; wood staining.