Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution

ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41980-41987. doi: 10.1021/acsami.7b13836. Epub 2017 Nov 17.

Abstract

Developing efficient electrocatalysts consisting of earth-abundant elements for oxygen evolution reaction (OER) is crucial for energy devices and technologies. Herein, we report self-supported highly porous nitrogen-doped graphene foam synthesized through the electrochemical expansion of carbon-fiber paper and subsequent nitrogen plasma treatment. A thorough characterization, such as electron microscopy and synchrotron-based near-edge X-ray absorption fine structure, indicates the well-developed porous structures featuring homogeneously doped nitrogen heteroatoms. These merits ensure enriched active sites, an enlarged active surface area, and improved mass/electron transport within the continuous graphene framework, thus leading to an outstanding capability toward electrocatalyzing OER in alkaline media, even competitive with the state-of-the-art noble-/transition-metal and nonmetal electrocatalysts reported to date, from the perspectives of the sharp onset potential, a small Tafel slope, and remarkable durability. Furthermore, a rechargeable Zn-air battery with this self-supported electrocatalyst directly used as the air cathode renders a low charge/discharge overpotential and considerable life span. The finding herein suggests that a rational methodology to synthesize graphene-based materials can significantly enhance the oxygen electrocatalysis, thereby promoting the overall performance of the energy-related system.

Keywords: chemical doping; electrocatalysis; electrochemical expansion; graphene; self-supporting.