Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine

Materials (Basel). 2017 Nov 6;10(11):1272. doi: 10.3390/ma10111272.

Abstract

Although polymerized aniline (polyaniline, PANI) with and without iodine (I₂) doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP) deposition. Therefore, this study characterized pure and I₂-doped PANI films synthesized using an advanced APP polymerization system. The I₂ doping was conducted ex-situ and using an I₂ chamber method following the APP deposition. The pure and I₂-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry (ToF-SIMS) studies. When increasing the I₂ doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C-N and C-H bonds when increasing the I₂ doping time due to the reduction of hydrogen in the PANI films via the I₂. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I₂ doping time.

Keywords: X-ray Diffraction (XRD); X-ray photoelectron spectroscopy (XPS); atmospheric pressure plasma; iodine doping; nanofiber; plasma polymerization; polymerized aniline (PANI); time of flight secondary ion mass spectrometry (ToF-SIMS).