Massively Parallel Sequencing of Genes Implicated in Heritable Cardiac Disorders: A Strategy for a Small Diagnostic Laboratory

Med Sci (Basel). 2017 Oct 10;5(4):22. doi: 10.3390/medsci5040022.

Abstract

Sudden cardiac death (SCD) in people before the age of 35 years is a devastating event for any family. The causes of SCD in the young can be broadly divided into two groups: heritable cardiac disorders that affect the heart structure (cardiomyopathies) and primary electrical disorders (cardiac ion channelopathies). Genetic testing is vital as those suffering from cardiac ion channelopathies have structurally normal hearts, and those with cardiomyopathies may only show subtle abnormalities in the heart and these signs may not be detected during an autopsy. Post-mortem genetic testing of SCD victims is important to identify the underlying genetic cause. This is important as family cascade screening may be undertaken to identify those who may be at risk and provide vital information about risk stratification and clinical management. The development of massively parallel sequencing (MPS) has made it possible for the simultaneous screening of multiple patients for hundreds of genes. In light of this, we opted to develop an MPS approach for SCD analysis that would allow us to screen for mutations in genes implicated in cardiomyopathies and cardiac ion channelopathies. The rationale behind this panel was to limit it to genes carrying the greatest mutation load. If no likely pathogenic gene variant were found then testing could cascade to whole exome/genome sequencing as a gene-discovery exercise. The overarching aim was to design and validate a custom-cardiac panel that satisfies the diagnostic requirements of LabPLUS (Auckland City Hospital, Auckland, NZ) and the guidelines provided by the Royal College of Pathologists of Australasia and the Association for Clinical Genetic Science.

Keywords: massively parallel sequencing; next generation sequencing, cardiac gene panel; sudden cardiac death.