Arachnoid cysts: the role of the BLADE technique

Hippokratia. 2016 Jul-Sep;20(3):244-248.

Abstract

Background: This study aims at demonstrating the ability of BLADE sequences to reduce or even eliminate all the image artifacts as well as verifying the significance of using this technique in certain pathological conditions.

Material and methods: This study involved fourteen consecutive patients (5 females, 9 males), who routinely underwent magnetic resonance imaging (MRI) brain examination, between 2010-2014. The applied routine protocol for brain MRI examination included the following sequences: i) T2-weighted (W) fluid-attenuated inversion recovery (FLAIR) axial; ii) T2-W turbo spin echo (TSE) axial; iii) T2*-W axial, iv) T1-W TSE sagittal; v) Diffusion-weighted (DWI) axial; vi) T1-W TSE axial; vii) T1-W TSE axial+contrast. Additionally, the T2-W FLAIR BLADE sequence was added to the protocol in cases of cystic tumors. Two radiologists independently evaluated all the images at two separate settings, which were performed 3 weeks apart. The presence of image artifacts such as motion, flow, chemical shift and Gibbs ringing artifacts, were also evaluated by the radiologists. In the measurements of the cysts, the extent of the divergence by the two MRI techniques (conventional and BLADE) was used by the two radiologists to evaluate the accuracy of the two techniques to determine the size of the cysts.

Results: BLADE sequences were found to be more reliable than the conventional ones regarding the estimation of the cyst size. The qualitative analysis showed that the T2 FLAIR BLADE sequences were superior to the conventional T2 FLAIR with statistical significance (p <0.001) in the following fields: i) overall image quality, ii) cerebrospinal fluid (CSF) nulling; iii) contrast between pathology and its surrounding; iv) borders of the pathology; v) motion artifacts; vi) flow artifacts; vii) chemical shift artifacts and viii) Gibbs ringing artifacts.

Conclusions: BLADE sequence was found to decrease both flow artifacts in the temporal lobes and motion artifacts from the orbits. Additionally, it was shown to improve flow artifacts and image quality in cystic pathologies such as arachnoid cysts. Hippokratia 2016, 20(3): 244-248.

Keywords: Arachnoid cysts; BLADE sequence; flow artifacts; magnetic resonance imaging; motion artifacts.

Publication types

  • Case Reports