Biotrickling filter modeling for styrene abatement. Part 2: Simulating a two-phase partitioning bioreactor

Chemosphere. 2018 Jan:191:1075-1082. doi: 10.1016/j.chemosphere.2017.10.141. Epub 2017 Oct 27.

Abstract

A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water-silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas-liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m-3 h-1 and empty bed residence times of 30-15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil.

Keywords: Biological air treatment; Biotrickling filter; Mathematical modeling; Silicone oil; Styrene; Two-phase partitioning bioreactor.

MeSH terms

  • Air Pollution / prevention & control*
  • Biodegradation, Environmental
  • Biofilms
  • Bioreactors
  • Environmental Restoration and Remediation / methods*
  • Filtration / methods*
  • Models, Chemical*
  • Models, Theoretical
  • Styrene / isolation & purification*
  • Water Pollution / prevention & control

Substances

  • Styrene