Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli

J Antimicrob Chemother. 2017 Oct 1;72(10):2729-2736. doi: 10.1093/jac/dkx204.

Abstract

Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics*
  • Chromosomes, Bacterial / genetics*
  • Colistin / pharmacology*
  • DNA Transposable Elements
  • Drug Resistance, Bacterial / genetics
  • Genetic Fitness
  • Genome, Bacterial
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Mutagenesis
  • Mutation
  • Polymyxin B / pharmacology*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transcription Factors / genetics*
  • Uropathogenic Escherichia coli / drug effects
  • Uropathogenic Escherichia coli / genetics*
  • Uropathogenic Escherichia coli / growth & development

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • DNA Transposable Elements
  • PmrB protein, bacteria
  • Transcription Factors
  • Polymyxin B
  • Colistin