Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites

Sci Rep. 2017 Oct 31;7(1):14700. doi: 10.1038/s41598-017-14710-4.

Abstract

It is well known the thermal properties of three-dimensional (3-D) hybrid graphene (GR)-carbon nanotube (CNT) structures are not superior to that of the individual GR and CNT, however, the 3-D hybrid GR-CNT structures can effectively improve the thermal properties of polymer matrix. Therefore, understanding the thermal energy transport in the interface between polymer matrix and 3-D hybrid GR-CNT structure is essential. Here, the enhancement mechanism of interfacial thermal transport of hybrid GR-CNT structure was explored by applying non-equilibrium molecular dynamics (NEMD) simulations. Three different types of hybrid GR-CNT structures were built. The influences of CNT radius and CNT type for the hybrid GR-CNT on the interfacial thermal properties were also analyzed. Computational results show that among the three different types of hybrid GR-CNT structures, the Model-I, i.e., the covalent bond hybrid GR-CNT structures are of the best interfacial thermal properties. Meanwhile, the CNT radius of hybrid GR-CNT structure has a great influence on the interfacial thermal properties.

Publication types

  • Research Support, Non-U.S. Gov't