Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate

Opt Lett. 2017 Nov 1;42(21):4367-4370. doi: 10.1364/OL.42.004367.

Abstract

We demonstrate a compact source of energetic and phase-locked multi-terahertz pulses at a repetition rate of 190 kHz. Difference frequency mixing of the fundamental output of an Yb:KGW amplifier with the idler of an optical parametric amplifier in GaSe and LiGaS2 crystals yields a passively phase-locked train of waveforms tunable between 12 and 42 THz. The shortest multi-terahertz pulses contain 1.8 oscillation cycles within the intensity full width at half-maximum. Pulse energies of up to 0.16 μJ and peak electric fields of 13 MV/cm are achieved. Electro-optic sampling reveals a phase stability better than 0.1 π over multiple hours, combined with free carrier-envelope phase tunability. The scalable scheme opens the door to strong-field terahertz optics at unprecedented repetition rates.