Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion

Sci Rep. 2017 Oct 30;7(1):14359. doi: 10.1038/s41598-017-14713-1.

Abstract

Hexagonal boron nitride-reinforced Inconel 718 (h-BN/IN718) composites were fabricated using a laser powder bed fusion (LPBF) technique to treat a nanosheet-micropowder precursor mixture prepared in a mechanical blending process. Tailoring the BN in IN718 enhanced the thermal resistance of the composites, thereby dampening the sharpness of the melting temperature peak at 1364 °C. This is because the presence of the BN reinforcement, which has a low coefficient of thermal expansion (CTE), resulted in a heat-blocking effect within the matrix. Following this lead, we found that the BN (2.29 g/cm3) was uniformly distributed and strongly embedded in the IN718 (8.12 g/cm3), with the lowest alloy density value (7.03 g/cm3) being obtained after the addition of 12 vol% BN. Consequently, its specific hardness and compressive strength rose to 41.7 Hv0.5 ·cm3/g and 92.4 MPa·cm3/g, respectively, compared to the unreinforced IN718 alloy with 38.7 Hv0.5 ·cm3/g and 89.4 MPa·cm3/g, respectively. Most importantly, we discovered that the wear resistance of the composite improved compared to the unreinforced IN718, indicated by a decrease in the coefficient of friction (COF) from 0.43 to 0.31 at 2400 s. This is because the BN has an exfoliated surface and intrinsically high sliding and lubricating characteristics.

Publication types

  • Research Support, Non-U.S. Gov't