Non-thermalization in trapped atomic ion spin chains

Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108):20170107. doi: 10.1098/rsta.2017.0107.

Abstract

Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

Keywords: discrete time crystals; many-body localization; prethermalization; quantum simulation; trapped ions.

Publication types

  • Review