New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy

Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1967-1980. doi: 10.1080/21691401.2017.1397001. Epub 2017 Oct 30.

Abstract

This review aims to overview and critically analyses recent developments in achieving tumour-specific delivery of anticancer agents, maximizing anticancer efficacy, and mitigating tumour progression and off-target effects. Stemming from critical needs to develop target-specific delivery vehicles in cancer therapy, various hyaluronic acid (HA)-conjugated nanomedicines have been fabricated owing to their biocompatibility, safety, tumour-specific targetability of drugs and genes, and proficient interaction with cluster-determinant-44 (CD44) receptors over-expressed on the surface of tumour cells. HA-based conjugation or surface modulation of anticancer drugs encapsulated nanocarriers have shown promising efficacy against the various types of carcinomas of liver, breast, colorectal, pancreatic, lung, skin, ovarian, cervical, head and neck and gastric. The success of this emerging platform is assessed in achieving the rapid internalization of anticancer payloads into the tumour cells, impeding cancer cells division and proliferation, induction of cancer-specific apoptosis and prevention of metastasis (tumour progression). This review extends detailed insight into the engineering of HA-based nanomedicines, characterization, utilization for the diagnosis or treatment of CD44 over-expressing cancer subtypes and emphasizing the transition of nanomedicines to clinical cancer therapy.

Keywords: CD44 overexpression; Cancer; hyaluronic acid; improved anticancer efficacy; nanomedicines; tumour-specific targetability.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacokinetics
  • Antineoplastic Agents* / therapeutic use
  • Drug Delivery Systems / methods*
  • Drug Resistance, Multiple / drug effects*
  • Drug Resistance, Neoplasm / drug effects*
  • Humans
  • Hyaluronic Acid* / chemistry
  • Hyaluronic Acid* / pharmacokinetics
  • Hyaluronic Acid* / therapeutic use
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism
  • Neoplasms / pathology

Substances

  • Antineoplastic Agents
  • Hyaluronic Acid