Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes

Sci Total Environ. 2018 Apr 15:621:1033-1046. doi: 10.1016/j.scitotenv.2017.10.123. Epub 2017 Oct 24.

Abstract

Growth in the nanotechnology sector is likely introducing unnatural formations of materials on the nanoscale (10-9m) to the environment. Disposal and degradation of products incorporating engineered nanomaterials (ENMs) are likely being released into natural aquatic systems un-intentionally primarily via waste water effluents. The fate and behaviour of metallic based nanoparticles (NPs) such as silver (Ag) in aquatic waters is complex with high levels of variability and uncertainty. In-situ physical, biological and chemical (natural attenuation) processes are likely to influence ENM fate and behaviour in freshwater systems. Surfaced functionalized particles may inhibit or limit environmental transformations which influence particle aggregation, mobility, dissolution and eco-toxic potential. This paper focuses on ENM characteristics and the influence of physical, chemical and biological processes occurring in aquatic systems that are likely to impact metallic ENMs fate. A focus on silver NPs (while for comparison, reporting about other metallic ENMs as appropriate) released to aquatic systems is discussed relating to their likely fate and behaviour in this dynamic and complex environment. This paper further highlights the need for specific risk assessment approaches for metallic ENMs and puts this into context with regard to informing environmental policy and potential NP influence on environmental/human health.

Keywords: Aquatic; Environmental; Health; Nanosilver; Toxicity.

Publication types

  • Review