LPS regulates the expression of glucocorticoid receptor α and β isoforms and induces a selective glucocorticoid resistance in vitro

J Inflamm (Lond). 2017 Oct 16:14:22. doi: 10.1186/s12950-017-0169-0. eCollection 2017.

Abstract

Background: This study was aimed to evaluate the effect of LPS in glucocorticoid receptor (GR) isoforms expression on different cell lines and PBMC from healthy donors in vitro and glucocorticoid sensitivity of PBMC in vitro.

Methods: U-2 OS cell lines expressing GR isoforms, different cell lines (CEM, RAJI, K562 and HeLa) or PBMC from healthy donors, were cultured or not with LPS. The expression of GRα and GRβ was evaluated by Western blot. Glucocorticoid sensitivity was evaluated in PBMC treated with LPS, testing genes which are transactivated or transrepressed by glucocorticoid. For transactivated genes (MKP1, FKBP5) PBMC were treated with Dexamethasone 100 nM for 6 h. The mRNA expression was measured by RT-PCR. For transrepressed genes (IL-8, GM-CSF), PBMC were cultured in Dexamethasone 100 nM and LPS 10 μg/ml for 6 h and protein expression was measure by ELISA.

Results: GR isoforms were induced in U-2 OS cells with a greater effect on GRα expression. Both isoforms were also induced in CEM cells with a tendency to a greater effect on GRβ. LPS induced only the expression of GRα in Raji and HeLa cells, and in PBMC, with no effect in K562 cells. LPS induced a loss of glucocorticoid inhibitory effect only on the secretion of GM-CSF.

Conclusion: LPS in vitro differentially modulates the expression of GR isoforms in a cell specific manner. In PBMC from healthy donors LPS induces an approximately two times increase in the expression of GRα and a loss of the glucocorticoid inhibitory effect on the secretion of GM-CSF, without affecting other glucocorticoid responses evaluated.

Keywords: Acute inflammation; Glucocorticoid receptor; Glucocorticoid resistance; Lipopolysaccharide.