Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation

Clin Cancer Res. 2018 Jan 1;24(1):234-247. doi: 10.1158/1078-0432.CCR-17-1629. Epub 2017 Oct 26.

Abstract

Purpose:fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition.Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivoResults: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML.Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apoptosis / genetics*
  • Benzothiazoles / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Female
  • Gene Duplication*
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy
  • Leukemia, Myeloid, Acute / genetics*
  • Leukemia, Myeloid, Acute / metabolism*
  • Membrane Potential, Mitochondrial
  • Mice
  • Myeloid Cell Leukemia Sequence 1 Protein / metabolism*
  • Phenylurea Compounds / pharmacology
  • Protein Kinase Inhibitors / pharmacology
  • Protein Processing, Post-Translational
  • Proteolysis
  • Proteome / metabolism
  • Proto-Oncogene Proteins c-pim-1 / antagonists & inhibitors*
  • Reactive Oxygen Species / metabolism
  • fms-Like Tyrosine Kinase 3 / antagonists & inhibitors*
  • fms-Like Tyrosine Kinase 3 / genetics*

Substances

  • Benzothiazoles
  • MCL1 protein, human
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Phenylurea Compounds
  • Protein Kinase Inhibitors
  • Proteome
  • Reactive Oxygen Species
  • quizartinib
  • FLT3 protein, human
  • fms-Like Tyrosine Kinase 3
  • Proto-Oncogene Proteins c-pim-1
  • proto-oncogene proteins pim