Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40224-40234. doi: 10.1021/acsami.7b11346. Epub 2017 Nov 7.

Abstract

In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of CuxSe and ZnxSn1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and CuxSe phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (JSC) of 37.47 mA/cm2, open circuit voltage (VOC) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm2. No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and completely overwhelmed the diode current at a measurement temperature of 200 °C. This is due to interlayer diffusion of metal that increases the shunt leakage current and decreases the efficiency of the CZTSe thin film solar cells.

Keywords: CZTSe; gradient; novel precursors; solar cell; sputter.