Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases

Angew Chem Int Ed Engl. 2017 Dec 22;56(52):16503-16506. doi: 10.1002/anie.201709910. Epub 2017 Nov 30.

Abstract

In nature, [FeFe]-hydrogenases catalyze the uptake and release of molecular hydrogen (H2 ) at a unique iron-sulfur cofactor. The absence of an electrochemical overpotential in the H2 release reaction makes [FeFe]-hydrogenases a prime example of efficient biocatalysis. However, the molecular details of hydrogen turnover are not yet fully understood. Herein, we characterize the initial one-electron reduction of [FeFe]-hydrogenases by infrared spectroscopy and electrochemistry and present evidence for proton-coupled electron transport during the formation of the reduced state Hred'. Charge compensation stabilizes the excess electron at the [4Fe-4S] cluster and maintains a conservative configuration of the diiron site. The role of Hred' in hydrogen turnover and possible implications on the catalytic mechanism are discussed. We propose that regulation of the electronic properties in the periphery of metal cofactors is key to orchestrating multielectron processes.

Keywords: biocatalysis; electrochemistry; hydrogen turnover; infrared spectroscopy; proton-coupled electron transfer.

Publication types

  • Research Support, Non-U.S. Gov't