Structural and Optical Properties of Single- and Few-Layer Magnetic Semiconductor CrPS4

ACS Nano. 2017 Nov 28;11(11):10935-10944. doi: 10.1021/acsnano.7b04679. Epub 2017 Oct 30.

Abstract

Atomically thin binary two-dimensional (2D) semiconductors exhibit diverse physical properties depending on their composition, structure, and thickness. By adding another element in these materials, which will lead to formation of ternary 2D materials, the property and structure would greatly change and significantly expanded applications could be explored. In this work, we report structural and optical properties of atomically thin chromium thiophosphate (CrPS4), a ternary antiferromagnetic semiconductor. Its structural details were revealed by X-ray and electron diffraction. Transmission electron microscopy showed that preferentially cleaved edges are parallel to diagonal Cr atom rows, which readily identified their crystallographic orientations. Strong in-plane optical anisotropy induced birefringence that also enabled efficient determination of crystallographic orientation using polarized microscopy. The lattice vibrations were probed by Raman spectroscopy and exhibited significant dependence on thickness of crystals exfoliated down to a single layer. Optical absorption determined by reflectance contrast was dominated by d-d-type transitions localized at Cr3+ ions, which was also responsible for the major photoluminescence peak at 1.31 eV. The spectral features in the absorption and emission spectra exhibited noticeable thickness dependence and hinted at a high photochemical activity for single-layer CrPS4. The current structural and optical investigation will provide a firm basis for future study and application of this kind of atomically thin magnetic semiconductors.

Keywords: 2D semiconductor; anisotropy; crystallographic orientation; magnetism; transition metal tetrathiophosphate.

Publication types

  • Research Support, Non-U.S. Gov't