Lower brain and blood nutrient status in Alzheimer's disease: Results from meta-analyses

Alzheimers Dement (N Y). 2017 Jun 24;3(3):416-431. doi: 10.1016/j.trci.2017.06.002. eCollection 2017 Sep.

Abstract

Introduction: Alzheimer's disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Recently, we showed the results of the meta-analyses indicating lower plasma levels of vitamins A, B12, C, E, and folate in AD patients compared with cognitively intact elderly controls (controls). Now, additional and more extensive literature searches were performed selecting studies which compare blood and brain/cerebrospinal fluid (CSF) levels of vitamins, minerals, trace elements, micronutrients, and fatty acids in AD patients versus controls.

Methods: The literature published after 1980 in Cochrane Central Register of Controlled Trials, Medline, and Embase electronic databases was systematically analyzed using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines to detect studies meeting the selection criteria. Search terms used are as follows: AD patients, Controls, vitamins, minerals, trace elements, micronutrients, and fatty acids. Random-effects meta-analyses using a linear mixed model with correction for age differences between AD patients and controls were performed when four or more publications were retrieved for a specific nutrient.

Results: Random-effects meta-analyses of 116 selected publications showed significant lower CSF/brain levels of docosahexaenoic acid (DHA), choline-containing lipids, folate, vitamin B12, vitamin C, and vitamin E. In addition, AD patients showed lower circulatory levels of DHA, eicosapentaenoic acid, choline as phosphatidylcholine, and selenium.

Conclusion: The current data show that patients with AD have lower CSF/brain availability of DHA, choline, vitamin B12, folate, vitamin C, and vitamin E. Directionally, brain nutrient status appears to parallel the lower circulatory nutrient status; however, more studies are required measuring simultaneously circulatory and central nutrient status to obtain better insight in this observation. The brain is dependent on nutrient supply from the circulation, which in combination with nutrient involvement in AD-pathophysiological mechanisms suggests that patients with AD may have specific nutritional requirements. This hypothesis could be tested using a multicomponent nutritional intervention.

Keywords: Alzheimer's disease; Brain; Cerebrospinal fluid; Choline; DHA; Metabolism; Neuronal membrane; Nutrient; Nutritional requirement; Omega-3 polyunsaturated fatty acids; Phosphatidylcholine; Phospholipid synthesis; Plasma; Synapse; Vitamins.

Publication types

  • Review