Ligand-Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins

J Am Chem Soc. 2017 Nov 22;139(46):16548-16555. doi: 10.1021/jacs.7b07373. Epub 2017 Nov 9.

Abstract

The current understanding of ligand effects in transition metal catalysis is mostly based on the analysis of catalyst-substrate through-bond and through-space interactions, with the latter commonly considered to be repulsive in nature. The dispersion interaction between the ligand and the substrate, a ubiquitous type of attractive noncovalent interaction, is seldom accounted for in the context of transition-metal-catalyzed transformations. Herein we report a computational model to quantitatively analyze the effects of different types of catalyst-substrate interactions on reactivity. Using this model, we show that in the copper(I) hydride (CuH)-catalyzed hydroamination of unactivated olefins, the substantially enhanced reactivity of copper catalysts based on bulky bidentate phosphine ligands originates from the attractive ligand-substrate dispersion interaction. These computational findings are validated by kinetic studies across a range of hydroamination reactions using structurally diverse phosphine ligands, revealing the critical role of bulky P-aryl groups in facilitating this process.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkenes / chemistry*
  • Amination
  • Catalysis
  • Copper / chemistry*
  • Kinetics
  • Ligands

Substances

  • Alkenes
  • Ligands
  • Copper