Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery

Mol Pharm. 2017 Dec 4;14(12):4515-4524. doi: 10.1021/acs.molpharmaceut.7b00643. Epub 2017 Nov 2.

Abstract

Therapeutic biologics have various advantages over synthetic drugs in terms of selectivity, their catalytic nature, and, thus, therapeutic efficacy. These properties offer the potential for more effective treatments that may also overcome the undesirable side effects observed due to off-target toxicities of small molecule drugs. Unfortunately, systemic administration of biologics is challenging due to cellular penetration, renal clearance, and enzymatic degradation difficulties. A delivery vehicle that can overcome these challenges and deliver biologics to specific cellular populations has the potential for significant therapeutic impact. In this work, we describe a redox-responsive nanoparticle platform, which can encapsulate hydrophilic proteins and release them only in the presence of a reducing stimulus. We have formulated these nanoparticles using an inverse emulsion polymerization (IEP) methodology, yielding inverse nanoemulsions, or nanogels. We have demonstrated our ability to overcome the liabilities that contribute to activity loss by delivering a highly challenging cargo, functionally active caspase-3, a cysteine protease susceptible to oxidative and self-proteolytic insults, to the cytosol of HeLa cells by encapsulation inside a redox-responsive nanogel.

Keywords: caspase-3; inverse emulsion polymerization; inverse nanoemulsion; nanogel; protease protection; protein delivery; redox-responsive nanogels.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Biological Products / administration & dosage*
  • Caspase 3 / administration & dosage*
  • Cytosol / metabolism*
  • Dithiothreitol / pharmacology
  • Drug Carriers / chemistry*
  • Emulsions / chemistry
  • Gels / chemistry
  • Glutathione / pharmacology
  • HeLa Cells
  • Humans
  • Nanocapsules / chemistry*
  • Oxidation-Reduction / drug effects
  • Polymerization

Substances

  • Biological Products
  • Drug Carriers
  • Emulsions
  • Gels
  • Nanocapsules
  • CASP3 protein, human
  • Caspase 3
  • Glutathione
  • Dithiothreitol