Effect of the Urban Heat Island on Aerosol pH

Environ Sci Technol. 2017 Nov 21;51(22):13095-13103. doi: 10.1021/acs.est.7b02786. Epub 2017 Nov 3.

Abstract

The urban heat island (UHI) is a widely observed phenomenon whereby urban environments have higher temperatures and different relative humidities than surrounding suburban and rural areas. Temperature (T) and relative humidity (RH) strongly affect the partitioning of semivolatile species found in the atmosphere, such as nitric acid, ammonia, and water. These species are inherently tied to aerosol pH, which is a key parameter driving some atmospheric chemical processes and environmental effects of aerosols. In this study, we characterized the effect of the UHI on aerosol pH in Baltimore, MD, and Chicago, IL. The T and RH differences that define the UHI lead to substantial differences in aerosol liquid water (ALW) content. The ALW differences produce urban aerosol pH that is systematically lower (more acidic) than rural aerosol pH for identical atmospheric composition. The UHI in Baltimore and Chicago are most intense during the summer and at night, with urban-rural aerosol pH differences in excess of 0.8 and 0.65 pH units, respectively. The UHI has been observed in cities of all sizes: the similarity of our results for cities with different climatologies and aerosol compositions suggests that these results have broad implications for chemistry occurring in and around urban atmospheres globally.

MeSH terms

  • Aerosols*
  • Baltimore
  • Chicago
  • Cities
  • Hot Temperature*

Substances

  • Aerosols