Polarization properties of receiving telescopes in atmospheric remote sensing polarization lidars

Appl Opt. 2017 Aug 20;56(24):6837-6845. doi: 10.1364/AO.56.006837.

Abstract

A receiving telescope is an indispensable component in an atmospheric remote sensing polarization lidar. In order to achieve accurate atmospheric depolarization measurements, it is necessary to study the polarization properties of receiving telescopes, which are embodied by their Mueller matrices. In this paper, the Mueller matrices of receiving telescopes are obtained by ray tracing with space vectors. The relationship between the measurement errors of the atmospheric depolarization parameter and the elements of the Mueller matrix of receiving telescopes is derived. The polarization properties of receiving telescopes in terms of orientation, field of view, and F number are analyzed, respectively. By comparing two common receiving telescopes in linear and circular polarization lidars, it is found that the measurement errors caused by the Newton telescopes in circular polarization lidars are significantly greater than those in linear polarization lidars, while the performances of the Cassegrain telescopes in the two lidars are almost identical. What is more, the measurement errors caused by the Cassegrain telescopes are much less than the counterparts caused by the Newton telescopes. According to the comparison results, the optimal telescopes are respectively presented for polarization lidars working in different polarization states and laser wavelengths.