Highly anisotropic electric conductivity in PAN-based carbon nanofibers

J Phys Condens Matter. 2017 Dec 13;29(49):494002. doi: 10.1088/1361-648X/aa9494.

Abstract

In addition to the chemical and physical properties of nanostructures their successful utilization for applications is strongly triggered by economic aspects. Electrospinning of nanowires from solution followed by subsequent annealing steps is a comparably cheap technique to fabricate conductive carbon nanofibers (CNF) made from polyacrylonitrile (PAN) molecules in large quantities. In this work, we investigated the microscopic properties of the CNFs with diameters of 100-300 nm by means of Raman and x-ray photoelectron spectroscopy and correlated these results with transport measurements done with a 4-tip STM. In particular, we investigated the effect of fiber alignment and knot densities, which can be controlled by applying constant creep due to stress during the stabilization process. The comparison of the conductivity obtained from single CNFs revealed further that the fiber crossings within the ensemble structure act as scattering centers and proofs that the transport is along the surfaces of the CNFs.