Towards quantum communications in free-space seawater

Opt Express. 2017 Aug 21;25(17):19795-19806. doi: 10.1364/OE.25.019795.

Abstract

Long-distance quantum channels capable of transferring quantum states faithfully for unconditionally secure quantum communication have been so far confirmed to be feasible in both fiber and free-space air. However, it remains unclear whether seawater, which covers more than 70% of the earth, can also be utilized, leaving global quantum communication incomplete. Here we experimentally demonstrate that polarization quantum states including general qubits of single photon and entangled states can survive well after travelling through seawater. We perform experiments with seawater collected over a range of 36 kilometers in the Yellow Sea. For single photons at 405 nm in a blue-green window, we obtain an average process fidelity above 98%. For entangled photons at 810nm, albeit very high loss, we observe the violation of Bell inequality with 33 standard deviations. Our results confirm the feasibility of a seawater quantum channel, representing the first step towards underwater quantum communication.