Tight focusing of laser light using a chromium Fresnel zone plate

Opt Express. 2017 Aug 21;25(17):19662-19671. doi: 10.1364/OE.25.019662.

Abstract

Using near-field scanning microscopy, we demonstrate that a 15-µm zone plate fabricated in a 70-nm chromium film sputtered on a glass substrate and having a focal length and outermost zone's width equal to the incident wavelength λ = 532 nm, focuses a circularly polarized Gaussian beam into a circular subwavelength focal spot whose diameter at the full-width of half-maximum intensity is FWHM = 0.47λ. This value is in near-accurate agreement with the FDTD-aided numerical estimate of FWHM = 0.46λ. When focusing a Gaussian beam linearly polarized along the y-axis, an elliptic subwavelength focal spot is experimentally found to measure FWHMx = 0.42λ (estimated value FWHMx = 0.40λ) and FWHMy = 0.64λ. The subwavelength focal spots presented here are the tightest among all attained so far for homogeneously polarized beams by use of non-immersion amplitude zone plates.