Profilometry with digital fringe-projection at the spatial and temporal Nyquist frequencies

Opt Express. 2017 Sep 18;25(19):22292-22302. doi: 10.1364/OE.25.022292.

Abstract

A phase-demodulation method for digital fringe-projection profilometry using the spatial and temporal Nyquist frequencies is presented. It allows to digitize tridimensional surfaces using the highest spatial frequency (π radians per pixel) and consequently with the highest sensitivity for a given digital fringe projector. Working with the highest temporal frequency (π radians per temporal sample), the proposed method rejects the DC component and all even-order distorting harmonics using 2-step phase shifting; this robustness against harmonics is similar to that of the popular 4-step least-squares phase-shifting algorithm. The proposed phase-demodulation method is suitable for the digitization of piecewise continuous surfaces because it does not require spatial low-pass filtering. Gamma calibration is also unnecessary because the projected fringes are binary, and the harmonics produced by the binary profile can be attenuated with a slight defocusing on the digital projector. Viability of the proposed method is supported by experimental results showing complete agreement with the predicted behavior.