Uncertainty characterization of particle location from refocused plenoptic images

Opt Express. 2017 Sep 4;25(18):21801-21814. doi: 10.1364/OE.25.021801.

Abstract

Plenoptic imaging is a 3D imaging technique that has been applied for quantification of 3D particle locations and sizes. This work experimentally evaluates the accuracy and precision of such measurements by investigating a static particle field translated to known displacements. Measured 3D displacement values are determined from sharpness metrics applied to volumetric representations of the particle field created using refocused plenoptic images, corrected using a recently developed calibration technique. Comparison of measured and known displacements for many thousands of particles allows for evaluation of measurement uncertainty. Mean displacement error, as a measure of accuracy, is shown to agree with predicted spatial resolution over the entire measurement domain, indicating robustness of the calibration methods. On the other hand, variation in the error, as a measure of precision, fluctuates as a function of particle depth in the optical direction. Error shows the smallest variation within the predicted depth of field of the plenoptic camera, with a gradual increase outside this range. The quantitative uncertainty values provided here can guide future measurement optimization and will serve as useful metrics for design of improved processing algorithms.