Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing

Opt Express. 2017 Oct 2;25(20):24164-24172. doi: 10.1364/OE.25.024164.

Abstract

When the energy of a short laser pulse is localized in a fluid material, a flow motion is induced that can lead to the generation of free-surface jets. This nozzle-free jetting process is exploited to print conductive materials, typically metal nanoparticle inks, but this approach remains limited to the transfer of low viscosity fluids with a minimum feature size of few micrometers. We introduce a dual-laser method to achieve reproducible high-aspect-ratio jets from thin solid films. A first laser irradiation induces the melting of copper thin films and a second synchronized short pulse irradiation initiates the jetting process. Using time-resolved microscopy, we investigate the influence of the film thickness on the flow motion mechanisms and the ejection dynamics. For a wide range of laser fluences, we present observations similar to those obtained when the jets are generated by a single laser pulse from liquid donor films. The use of a solid film allows reducing the film thickness and then the volume of transferred material. Finally, we analyze these results in the perspective of using this double pulse LIFT technique for additive manufacturing of nano-micro-structures. Stable jets are formed from the copper films over distances exceeding 50-μm and are exploited to demonstrate periodic printing of 1.5-μm diameter droplets.