Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths

Opt Express. 2017 Aug 7;25(16):19468-19478. doi: 10.1364/OE.25.019468.

Abstract

Controlling the group velocity dispersion of silicon nanophotonic waveguides has been recognized as a key ingredient to enhance the development of various on-chip optical applications. However, the strong wavelength dependence of the dispersion in waveguides implemented on the high index contrast silicon-on-insulator (SOI) platform substantially hinders their wideband operation, which in turn, limits their deployment. In this work, we exploit the potential of non-resonant sub-wavelength grating (SWG) nanostructures to perform a flexible and wideband control of dispersion in SOI waveguides. In particular, we demonstrated that the overall dispersion of the SWG-engineered metamaterial waveguides can be tailored across the transparency window of the SOI platform, keeping easy-to-handle single-etch step manufacturing. The SWG silicon waveguides overcladded by silicon nitride exhibit significant reduction of wavelength dependence of dispersion, yet providing intriguing and customizable synthesis of various attractive dispersion profiles. These include large normal up to low anomalous operation regimes, both of which could make a great promise for plethora of emerging applications in silicon photonics.