Unraveling beam self-healing

Opt Express. 2017 Aug 7;25(16):19147-19157. doi: 10.1364/OE.25.019147.

Abstract

We show that, contrary to popular belief, diffraction-free beams may not only reconstruct themselves after hitting an opaque obstacle but also, for example, Gaussian beams. We unravel the mathematics and the physics underlying the self-reconstruction mechanism and we provide for a novel definition for the minimum reconstruction distance beyond geometric optics, which is in principle applicable to any optical beam that admits an angular spectrum representation. Moreover, we propose to quantify the self-reconstruction ability of a beam via a newly established degree of self-healing. This is defined via a comparison between the amplitudes, as opposite to intensities, of the original beam and the obstructed one. Such comparison is experimentally accomplished by tailoring an innovative experimental technique based upon Shack-Hartmann wave front reconstruction. We believe that these results can open new avenues in this field.