The fate of endemic insects of the Andean region under the effect of global warming

PLoS One. 2017 Oct 16;12(10):e0186655. doi: 10.1371/journal.pone.0186655. eCollection 2017.

Abstract

Three independent but complementary lines of research have provided evidence for the recognition of refugia: paleontology, phylogeography and species distributional modelling (SDM). SDM assesses the ecological requirements of a species based on its known occurrences and enables its distribution to be projected on past climatological reconstructions. One advantage over the other two approaches is that it provides an explicit link to environment and geography, thereby enabling the analysis of a large number of taxa in the search for more general refugia patterns. We propose a methodology for using SDM to recognize biogeographical patterns of endemic insects from Southern South America. We built species distributional models for 59 insect species using Maxent. The species analyzed in the study have narrow niche breadth and were classified into four assemblages according to the ecoregion they inhabit. Models were built for the Late Pleistocene, Mid-Holocene and Present. Through the procedure developed for this study we used the models to recognize: Late Pleistocene refugia; areas with high species richness during all three periods; climatically constant areas (in situ refugia); consistent patterns among in situ refugia, Pleistocene refugia and current distribution of endemic species. We recognized two adjacent Pleistocene refugia with distinct climates; four in situ refugia, some of which are undergoing a process of fragmentation and retraction or enlargement. Interestingly, we found a congruent pattern among in situ refugia, Pleistocene refugia and endemic species. Our results seem to be consistent with the idea that long-term climate stability is known to have a key role in promoting persistence of biodiversity in an area. Our Pleistocene and in situ refugia are consistent with refugia identified in studies focusing on different taxa and applying other methodologies, showing that the method developed can be used to identify such areas and prove their importance for conservation.

MeSH terms

  • Animals
  • Global Warming*
  • Insecta*
  • Models, Statistical*
  • South America

Grants and funding

The work was funded by Fondo para la Investigación Científica y Tecnológica (FONCYT), PICT- 0488, and our main employer Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).