Holographic imaging through a scattering layer using speckle interferometry

J Opt Soc Am A Opt Image Sci Vis. 2017 Aug 1;34(8):1392-1399. doi: 10.1364/JOSAA.34.001392.

Abstract

Optical imaging through complex scattering media is one of the major technical challenges with important applications in many research fields, ranging from biomedical imaging to astronomical telescopy to spatially multiplexed optical communications. Various approaches for imaging through a turbid layer have been recently proposed that exploit the advantage of object information encoded in correlations of the random optical fields. Here we propose and experimentally demonstrate an alternative approach for single-shot imaging of objects hidden behind an opaque scattering layer. The proposed technique relies on retrieving the interference fringes projected behind the scattering medium, which leads to complex field reconstruction, from far-field laser speckle interferometry with two-point intensity correlation measurement. We demonstrate that under suitable conditions, it is possible to perform imaging to reconstruct the complex amplitude of objects situated at different depths.