NADPH Oxidase Mediates β-Amyloid Peptide-Induced Neuronal Death in Mouse Cortical Cultures

Chonnam Med J. 2017 Sep;53(3):196-202. doi: 10.4068/cmj.2017.53.3.196. Epub 2017 Sep 25.

Abstract

β-Amyloid peptide (Aβ) is the main component of senile plaques in patients with Alzheimer's disease, and is known to be a main pathogenic factor of the disease. Recent evidence indicates that activation of NADPH oxidase (NOX) in microglia or astrocytes may be a source of Aβ-induced reactive oxygen species (ROS). We investigated the role of neuronal NOX in Aβ-induced neuronal death in mouse mixed cortical cultures. Cell death was assessed by measuring lactate dehydrogenase efflux to bathing media 24 or 48 hr after exposure to Aβ25-35, a fragment of Aβ with an equivalent neurotoxic effect. Aβ25-35 induced neuronal death in concentration- and time- dependent manners with apoptotic features. Neuronal death was significantly attenuated, not only by anti-apoptotic drugs, such as z-VAD-fmk and cycloheximide, but also by antioxidants, such as trolox, ascorbic acid, and epigallocatethin gallate. We also demonstrated that treatment with 20 µM Aβ25-35 increased fluorescent signals in mixed cortical cultures, but produced only weak signals in pure astrocyte cultures in the presence of 2',7'-dichlorofluorescin diacetate (DCF-DA), an indicator for intracellular ROS. Increased DCF-DA fluorescence was markedly inhibited, not only by trolox, but also by selective NOX inhibitors, such as apocynin and AEBSF. Western blot analyses revealed that Aβ25-35 increased the expression of gp91phox, a main subunit of NOX in cells. The above antioxidants, apocynin, and AEBSF significantly attenuated neuronal death induced by Aβ25-35. Furthermore, the gp91phox-specific siRNA-based knockdown of NOX significantly inhibited neuronal death. These results suggest that activation of neuronal NOX is involved in Aβ25-35-induced neuronal death.

Keywords: Alzheimer Disease; Amyloid beta-Peptides; NADPH Oxidase; Reactive Oxygen Species.