Overview of glyphosate-resistant weeds worldwide

Pest Manag Sci. 2018 May;74(5):1040-1049. doi: 10.1002/ps.4760. Epub 2017 Nov 29.

Abstract

Glyphosate is the most widely used and successful herbicide discovered to date, but its utility is now threatened by the occurrence of several glyphosate-resistant weed species. Glyphosate resistance first appeared in Lolium rigidum in an apple orchard in Australia in 1996, ironically the year that the first glyphosate-resistant crop (soybean) was introduced in the USA. Thirty-eight weed species have now evolved resistance to glyphosate, distributed across 37 countries and in 34 different crops and six non-crop situations. Although glyphosate-resistant weeds have been identified in orchards, vineyards, plantations, cereals, fallow and non-crop situations, it is the glyphosate-resistant weeds in glyphosate-resistant crop systems that dominate the area infested and growing economic impact. Glyphosate-resistant weeds present the greatest threat to sustained weed control in major agronomic crops because this herbicide is used to control weeds with resistance to herbicides with other sites of action, and no new herbicide sites of action have been introduced for over 30 years. Industry has responded by developing herbicide resistance traits in major crops that allow existing herbicides to be used in a new way. However, over reliance on these traits will result in multiple-resistance in weeds. Weed control in major crops is at a precarious point, where we must maintain the utility of the herbicides we have until we can transition to new weed management technologies. © 2017 Society of Chemical Industry.

Keywords: glyphosate resistance; glyphosate-resistant crops; herbicide resistance; mode of action; multiple resistance; weeds.

Publication types

  • Review

MeSH terms

  • Glycine / analogs & derivatives*
  • Glycine / pharmacology
  • Glyphosate
  • Herbicide Resistance*
  • Herbicides / pharmacology*
  • Plant Weeds / drug effects*
  • Weed Control*

Substances

  • Herbicides
  • Glycine