Bioinspired Dynamic Wetting on Multiple Fibers

Adv Mater. 2017 Dec;29(45). doi: 10.1002/adma.201703042. Epub 2017 Oct 12.

Abstract

Natural fibers have versatile strategies for interacting with water media and better adapting to the local environment, and these strategies offer inspiration for the development of artificial functional fibers with diverse applications. Wetting on fibers is a dynamic liquid-moving process on/in fibrous systems with various patterns, and the process is normally driven by the structural gradient, chemical gradient, elasticity of a single fiber, or the synergistic effect of these factors in multiple fibers in an integrated system in which the spatial geometry of the fibers is involved. Compared with the directional liquid movement on a single fiber, wetting on multiple fibers in both the micro- and macroscales is particularly fascinating, with various performances, including directional liquid transport, controllable liquid transfer, efficient liquid encapsulation, and capillary-induced fibrous coalescence. Based on these properties, fibrous materials offer an alternative open system for liquid manipulation that is applicable to various functional liquid materials. Here, recent achievements in bioinspired dynamic wetting on multiple fibers are highlighted, and perspectives on future directions are presented.

Keywords: bioinspired; dynamic; fibers; liquid manipulation; wettability.

Publication types

  • Review