Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy

ACS Nano. 2017 Nov 28;11(11):11108-11117. doi: 10.1021/acsnano.7b05258. Epub 2017 Oct 16.

Abstract

Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.

Keywords: STEM; breast cancer cell; epidermal growth factor receptor; graphene; liquid-phase electron microscopy; single-molecule analysis; tunneling nanotube.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Graphite / chemistry*
  • Humans
  • Lab-On-A-Chip Devices
  • Membrane Proteins / chemistry
  • Microscopy, Electron*
  • Neoplasm Proteins / chemistry
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / isolation & purification*
  • Quantum Dots / chemistry
  • Receptor, ErbB-2 / chemistry*
  • Receptor, ErbB-2 / genetics
  • Silicon Compounds / chemistry
  • Single Molecule Imaging / methods

Substances

  • Membrane Proteins
  • Neoplasm Proteins
  • Silicon Compounds
  • Graphite
  • ERBB2 protein, human
  • Receptor, ErbB-2
  • silicon nitride