Effective media properties of hyperuniform disordered composite materials

PLoS One. 2017 Oct 5;12(10):e0185921. doi: 10.1371/journal.pone.0185921. eCollection 2017.

Abstract

The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design.

MeSH terms

  • Electromagnetic Radiation
  • Manufactured Materials*
  • Models, Theoretical

Grants and funding

BW thanks the China Scholarship Council (No. 201406030051) during his visit to Queen Mary University of London, where this work was undertaken. YH would like to thank the Royal Society for the Wolfson Research Merit Award, the IET for AF Harvey Research Prize and the EPSRC for the QUEST Programme Grant (EP/I034548/1).