Nanoengineered Colloidal Inks for 3D Bioprinting

Langmuir. 2018 Jan 23;34(3):917-925. doi: 10.1021/acs.langmuir.7b02540. Epub 2017 Oct 25.

Abstract

Nanoengineered hydrogels offer the potential to design shear-thinning bioinks for three-dimensional (3D) bioprinting. Here, we have synthesized colloidal bioinks composed of disk-shaped two-dimensional (2D) nanosilicates (Laponite) and poly(ethylene glycol) (PEG). The addition of Laponite reinforces the PEG network and increases viscosity, storage modulus, and network stability. PEG-Laponite hydrogels display shear-thinning and self-recovery characteristics due to rapid internal phase rearrangement. As a result, a range of complex patterns can be printed using PEG-Laponite bioinks. The 3D bioprinted structure has similar mechanical properties compared to the as-casted structure. In addition, encapsulated cells within the PEG-Laponite bioink show high viability after bioprinting. Overall, this study introduces a new class of PEG-Laponite colloidal inks for bioprinting and cell delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bioprinting / methods*
  • Colloids / chemistry
  • Hydrogels
  • Ink*
  • Polyethylene Glycols / chemistry
  • Printing, Three-Dimensional*
  • Silicates / chemistry

Substances

  • Colloids
  • Hydrogels
  • Silicates
  • Polyethylene Glycols
  • laponite