Cell volume change through water efflux impacts cell stiffness and stem cell fate

Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8618-E8627. doi: 10.1073/pnas.1705179114. Epub 2017 Sep 25.

Abstract

Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.

Keywords: cell mechanics; cell volume; gene expression; molecular crowding; stem cell fate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation*
  • Cell Lineage
  • Cell Physiological Phenomena*
  • Cell Size*
  • Cells, Cultured
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / physiology*
  • Mice
  • Mice, Inbred BALB C
  • Water / metabolism*

Substances

  • Water