The Gastrointestinal Tract Is a Major Source of Echinocandin Drug Resistance in a Murine Model of Candida glabrata Colonization and Systemic Dissemination

Antimicrob Agents Chemother. 2017 Nov 22;61(12):e01412-17. doi: 10.1128/AAC.01412-17. Print 2017 Dec.

Abstract

Candida species are a part of the human microbiome and can cause systemic infection upon immune suppression. Candida glabrata infections are increasing and have greater rates of antifungal resistance than other species. Here, we present a C. glabrata gastrointestinal (GI) colonization model to explore whether colonized yeast exposed to caspofungin, an echinocandin antifungal, develop characteristic resistance mutations and, upon immunosuppression, breakthrough causing systemic infection. Daily therapeutic dosing (5 mg/kg of body weight) of caspofungin resulted in no reduction in fecal burdens, organ breakthrough rates similar to control groups, and resistance rates (0 to 10%) similar to those reported clinically. Treatment with 20 mg/kg caspofungin initially reduced burdens, but a rebound following 5 to 9 days of treatment was accompanied by high levels of resistance (FKS1/FKS2 mutants). Although breakthrough rates decreased in this group, the same FKS mutants were recovered from organs. In an attempt to negate drug tolerance that is critical for resistance development, we cotreated mice with daily caspofungin and the chitin synthase inhibitor nikkomycin Z. The largest reduction (3 log) in GI burdens was obtained within 3 to 5 days of 20 mg/kg caspofungin plus nikkomycin treatment. Yet, echinocandin resistance, characterized by a novel Fks1-L630R substitution, was identified following 5 to 7 days of treatment. Therapeutic caspofungin plus nikkomycin treatment left GI burdens unchanged but significantly reduced organ breakthrough rates (20%; P < 0.05). Single-dose pharmacokinetics demonstrated low levels of drug penetration into the GI lumen posttreatment with caspofungin. Overall, we show that C. glabrata echinocandin resistance can arise within the GI tract and that resistant mutants can readily disseminate upon immunosuppression.

Keywords: Candida glabrata; antifungal resistance; echinocandin; intestinal colonization; nikkomycin; systemic dissemination.

MeSH terms

  • Aminoglycosides / pharmacology
  • Animals
  • Antifungal Agents / pharmacokinetics
  • Antifungal Agents / pharmacology*
  • Candida glabrata / drug effects*
  • Candida glabrata / genetics
  • Candida glabrata / growth & development
  • Candidiasis / drug therapy*
  • Candidiasis / immunology
  • Candidiasis / microbiology
  • Caspofungin
  • Chitin Synthase / antagonists & inhibitors
  • Chitin Synthase / genetics
  • Chitin Synthase / metabolism
  • Dexamethasone / adverse effects
  • Disease Models, Animal
  • Drug Administration Schedule
  • Drug Resistance, Fungal / genetics
  • Drug Tolerance / genetics
  • Echinocandins / pharmacokinetics
  • Echinocandins / pharmacology*
  • Female
  • Fungal Proteins / genetics*
  • Fungal Proteins / metabolism
  • Gastrointestinal Tract / drug effects*
  • Gastrointestinal Tract / immunology
  • Gastrointestinal Tract / microbiology
  • Glucosyltransferases / genetics*
  • Glucosyltransferases / metabolism
  • Humans
  • Immunosuppressive Agents / adverse effects
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Lipopeptides / pharmacokinetics
  • Lipopeptides / pharmacology*
  • Mice
  • Microbial Sensitivity Tests
  • Mutation

Substances

  • Aminoglycosides
  • Antifungal Agents
  • Echinocandins
  • Fungal Proteins
  • Immunosuppressive Agents
  • Isoenzymes
  • Lipopeptides
  • Dexamethasone
  • nikkomycin
  • Glucosyltransferases
  • Chitin Synthase
  • Caspofungin

Supplementary concepts

  • Systemic candidiasis