Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency

J Am Chem Soc. 2017 Oct 25;139(42):15094-15103. doi: 10.1021/jacs.7b07847. Epub 2017 Oct 17.

Abstract

A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi2O4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi2O4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi2O4, which can facilitate charge separation. Compared to homogeneous CuBi2O4 photocathodes, CuBi2O4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi2O4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi2O4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi2O4 up to -2.5 mA/cm2 at 0.6 V vs RHE with H2O2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi2O4 are maintained. Lastly, forward gradient self-doped CuBi2O4 photocathodes are protected with a CdS/TiO2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

Publication types

  • Research Support, Non-U.S. Gov't