Susceptibilities of Geographic Populations of Helicoverpa zea (Lepidoptera: Noctuidae) in Mexico to Bt ∂-Endotoxins Cry1Ac and Cry2Ab: An 18-Yr Study

J Econ Entomol. 2017 Oct 1;110(5):2207-2216. doi: 10.1093/jee/tox203.

Abstract

An insect resistance monitoring program was developed for Mexico to accommodate the commercial introduction and stewardship of Bt cotton. Between 1998 and 2015, field-collected geographic populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) were evaluated against Cry1Ac and Cry2Ab proteins of Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) to establish baseline susceptibility data before the commercial use of Bollgard (Cry1Ac) and Bollgard II (Cry1Ac and Cry2Ab) cotton. An annual monitoring program was subsequently established in which a single diagnostic concentration of each Bt protein was used in a diet overlay bioassay. The diagnostic concentration represented the concentration where larvae, evaluated in baseline studies, were reduced in weight by ≥97% relative to untreated controls or failed to molt to third instar after 5 d. In the monitoring study, populations were tested against Cry1Ac from 1998 through 2015, and against Cry2Ab from 2002 through 2004 and again from 2007 through 2015. None of the Cry1Ac-exposed larvae tested during the 18-yr period reached the third larval instar after an exposure of 5 d, and weight reduction relative to untreated control larvae was uniform at about 98-99%. For the 12 yr of Cry2Ab monitoring, no larvae reached third instar, and weight reduction was uniform at >97% relative to controls. These results indicate that H. zea susceptibility to Cry1Ac and Cry2Ab has not changed during the period Bollgard and Bollgard II have been cultivated in Mexico.

Keywords: Bt protein; Helicoverpa zea; cotton; diagnostic concentration; insect resistance monitoring.

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins*
  • Endotoxins*
  • Hemolysin Proteins*
  • Insecticide Resistance
  • Mexico
  • Moths*

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • insecticidal crystal protein, Bacillus Thuringiensis