High power, high repetition rate, tunable broadband mid-IR source based on single-pass optical parametric generation of a femtosecond laser

Opt Lett. 2017 Aug 1;42(15):2886-2889. doi: 10.1364/OL.42.002886.

Abstract

We report on single-pass optical parametric generation for high power, high repetition rate (RR), ultrafast broadband optical radiation in the mid-IR. Taking advantage of broad phase-matching bandwidth (BW) of the crystals for the interacting waves having zero group velocity mismatch, we have used a 50 mm long MgO-doped periodically poled LiNbO3 crystal to develop a single-pass, parametric source producing femtosecond output pulses at a RR of 78 MHz. Pumping with a femtosecond Yb-fiber laser at 1064 nm, the source produces signal and idler radiation tunable across 1422-1561 nm and 4229-3342 nm, respectively. The signal radiation has a pulse and spectral BW of 296 fs and 9.2 nm centered at 1492 nm, respectively, with a time-BW product ∼0.37, close to the transform limit. The idler radiation has spectral BW as high as 123 nm centered at 3709 nm. The source produces a signal (idler) beam of power of 2.07 W (0.54 W) at 1492 nm (3709 nm) in a Gaussian spatial profile with peak-to-peak passive power fluctuation better than 5% (4%) over 4 h at a single-pass conversion efficiency as high as ∼55%.